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Sailboat propeller drag
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Tel: +44 141 548 2045; fax: +44 141 552 5105  

E-mail address: peter.mackenzie@strath.ac.uk

ABSTRACT 

All but the smallest classes of modern keelboats are fitted with inboard engines and 

consequently, when making way under sail, the craft experience parasitic drag due to 

trailing propellers and associated appendages. The variety of screw configurations 

used on sailing boats includes fixed-blade, feathering, and folding setups, with blades 

numbering two or three. Although the magnitude of the resultant drag is thought to 

have a significant influence on sailing performance, the published literature having 

regard to this problem is sparse. Here, the aim was to evaluate the drag effect of fixed-

blade propellers of types commonly used on sailing craft. The results of towing tank 

tests on full-scale propellers are presented for the locked shaft condition; these are 

presented along with reconfigured data from the few previously published sources. 

For the case in which the propeller is allowed to rotate, tests were conducted on a 

typical screw with a range of braking torques being applied. It was hypothesised that 

the performance coefficients of the Wageningen B-Screw Series could be used to 

characterise adequately the types of screw of interest and that these could be 

extrapolated to enable prediction of the drag of a freewheeling propeller; an 

assessment of this formed part of the investigation. 

Keywords: Drag; Experiment; Propeller; Sailboat; Towing tank.
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INTRODUCTION 

For several decades, virtually all sailing yachts over about 8 metres overall length 

(LOA) have been equipped with inboard engines driving through either fixed 

propeller shafts or, increasingly so, the more compact “saildrive” units. Some 

examples of common configurations are depicted in Figure 1. Even race-oriented 

designs are, in general, equipped with quite substantial auxiliary power units, despite 

the penalty in sailing performance caused by the additional weight of the machinery 

and fuel, and the hydrodynamic drag arising from the extraneous appendages such as 

propellers and shafts.  

An obvious way to achieve a reduction in hydrodynamic losses is to fit a propeller 

with folding or feathering blades. Nevertheless, a cursory survey of any winter lay-up 

yard will confirm that the majority of yachts used exclusively for cruising, and indeed 

a small proportion of those used for racing, are fitted with conventional fixed 

geometry two- or three-bladed propellers. There are several reasons for this. First of 

all, low-drag deployable propellers are mechanically complex and consequently have 

a high initial price - up to ten times that of the fixed-blade equivalent. Having moving 

parts, and operating in an exposed and corrosive environment, they are prone to wear 

and damage. Some designs of folding propellers in particular, in which the blades are 

deployed by centrifugal force when the prop-shaft spins, have blade geometries which 

are compromised by the impositions of the deployment function such that their 

hydrodynamic efficiencies are relatively poor driving ahead, and are significantly 

worse for astern propulsion and manoeuvring, when compared to the fixed-blade 

alternatives. Finally, there appears to be no consensus in the sailing community, nor in 

racing handicap administration, nor in the sailboat design field, as to the actual gains 
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to be had in sailing performance, in an objective and quantifiable sense, when the low 

drag configuration is employed in preference to fixed blade propellers (some measure 

of the range of views may be gleaned from, for example: Henderson 1983; Johnson 

1997; Skene 1938; and Warren 1972). Adding to this confusion is  the myth of 

common currency among many yachtsmen that the practice of locking a fixed blade 

propeller to prevent rotation results in less drag than would allowing it to freewheel. 

The present work seeks to address some of the more important aspects of these 

lacunae. 

EXISTING HYPOTHESES. 

Whilst, with obvious justification, the subject of ship propeller performance and 

efficiency has had a great deal of research effort devoted to it, the topic of parasitic 

propeller drag appears rarely in the literature.  

Larsson and Eliasson (1994) proposed that the following relationship be used to 

estimate propeller resistance, RP, in a boat design context: 

RP = 0.5 V2 CD AP ………………………… (1) 

and that the drag coefficients are: 

CD = 1.2 for fixed blades, shaft locked. 

CD = 0.3 for fixed blades, shaft free to rotate, zero braking torque. 

CD = 0.06 for a two blade folding propeller. 
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AP is the projected frontal area of the propeller, V is the boat speed and  is the density 

of water. (They do not directly identify the source of these CD values, and one 

assumes that the coefficient given for the locked shaft condition may simply be that of 

a flat disc, bluff body.) Part of the present work would be directed at assessing the 

veracity of this convenient approach. 

Lurie and Taylor (1995) reported the results of their tests of a comprehensive range of 

sailboat propellers covering virtually all popular configurations. Their study was 

principally directed towards assessing the performance of each screw as a propulsion 

device but they also produced some measurements of the drag characteristics for the 

locked shaft condition (with regard to parasitic drag, this being the least desirable of 

all).  In the concluding part of their work, they went on to allude to the possibility of 

being able to extrapolate propeller performance curves to predict the parasitic drag 

force for a notional speed of screw rotation, but stopped short of assessing the validity 

of this. One of the aims of our investigation was to develop this proposal further. 

PROPOSED APPROACHES 

The main thrust of this work, therefore, was to establish the veracity of the existing 

hypotheses summarised above, and where appropriate, to assess possible refinements 

or alternatives. The investigation can thus be divided conveniently into two elements: 

consideration of the drag produced by freewheeling propellers; and evaluation of the 

drag characteristics of propellers with locked shafts.

INVESTIGATION - FREEWHEELING CONDITION 

Performance Characteristics of Propellers 
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The proposal being investigated in this part of the work is built around the following 

three forward-performance characteristics of propellers:- 

i) Advance Ratio,
nD

V
J A  …….………………………. (2) 

where VA is the velocity of advance of the propeller, D is the propeller diameter, 

and n is the rotational speed. 

ii) Torque Coefficient,  
25nD

Q
KQ

  ………………… (3) 

where Q is the torque on the propeller shaft. 

iii) Thrust Coefficient,
24nD

T
KT

     ………………….. (4) 

where T is the thrust on the propeller. 

In ship design practice, the relationship between these three parameters is used 

routinely to characterise individual designs of propeller (as propulsion devices) and 

this is usually depicted in the form shown schematically in Figure 2. The curve for 

efficiency of propulsion, , is also generally presented as shown along with these data 

but for our purpose, namely the prediction of propeller drag under sail, it is of less 

significance. For completeness, however, it may be noted that is derived from the 

aforementioned parameters according to: 

Propeller efficiency,

Q

T

K

KJ

2
   ………..………… (5) 

Frictional Torque 

A key part of our proposition is that, in cases where a vessel is making way under sail 

and its propeller is allowed to free-wheel, the rotational frictional force on the 
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propeller shaft, the negative torque, may be assumed to be constant for a given 

installation, regardless of, within realistic practical limits, the shaft speed of rotation. 

In practice, of course, factors such as stern gland tightness, gearbox oil viscosity 

(largely a function of temperature), bearing efficiency and wear, and so on, will 

influence the level of friction. Nevertheless, for virtually any boat among the types 

described in the introduction, the torque required to rotate the shaft should be readily 

measurable in situ using the most basic of apparatus; and obviously, account may be 

taken of the spectrum of frictional conditions for a given setup if so required. The 

main point here is that, given a particular set of shaft friction conditions, then for all 

rotational speeds likely to be encountered in practice, the frictional torque, Q, can be 

assumed to be constant throughout the speed range. In this respect, we diverge from 

Lurie and Taylor who suggested that an estimated average speed of rotation, n, be 

used in the analysis. (Their thinking was that by fixing n, one would be able to obtain 

J for any value of velocity, and thus the relevant values of KT could be extracted from 

the extrapolated performance chart. Hence, it would be a simple step to calculate the 

resultant negative thrust using equation (4), and thereby generate a chart of drag v. 

velocity. Attractive though this would be, it is erroneous, as we will show, since a 

very wide band of rotational speed is observed in practice.)  

Velocity of Advance 

For the purpose of this investigation, it is assumed that the velocity of advance, VA, of 

the propeller is identical to, or can be related to, boat speed, V. In other words, the 

water flow experienced by the propeller is equal to the open-water flow past the hull, 

remote from the local influence of wake produced by the hull and its appendages, or 

that a suitable wake correction may be applied. Taylor’s wake fraction is given by: 
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V

VV
w A

and hence: 

)1( wVVA
             …………………………… (6) 

 In the first instance, therefore, we will assume that w = 0; in practice, this may not be 

absolutely so, but for modern fin-keeled sailing boats, fitted with efficient, high 

aspect-ratio, airfoil section keels, the propeller is generally located well aft of the keel 

and below, rather than behind, the hull; thus the effect of wake interaction is to reduce 

VA to not less than about 0.9V (Larsson & Eliasson, 1994). On the other hand, if the 

propeller is behind an unfaired skeg, or in the case of older style long-keeled yachts, 

dual-purpose motor sailers, and on some large modern sailing vessels, where the 

propeller is usually mounted behind the hull or in an aperture behind, and close to, the 

dead-wood of the keel, w may be much higher (Skene, 1938, predicts a value of 0.2 in 

some such cases). For sailing vessels, the range of values of w, from virtually zero to 

about 0.2, is therefore very much narrower than that encountered in power driven 

vessels (e.g., Gerr, 1989); nevertheless, for any situation, appropriate adjustment to 

account for conditions of reduced flow can readily be made in those cases in which it 

is of significance. (Some contrasting keel types are depicted, inter alia in Figure 1.) 

Relating Velocity of Advance to Propeller Drag

The key assumption in the proposed approach is that the braking torque imparted on 

the propeller shaft is constant throughout the speed range. It follows then from 

equation (3) that, for such an installation where Q is constant, for every value of KQ,
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there is a unique value of shaft speed, n; similarly, there is a single corresponding 

value of J. In such a propulsion system setup, the variables in equations (2), (3) and 

(4) are VA, n and T. Since the remaining factors are constant (namely, the frictional 

torque and the screw diameter) and can be measured quite straightforwardly, we can 

draw (2) and (3) together to give:- 

Q

A
KD

Q
JDV

5
    ………………………………. (6) 

Here, the proposal is to apply data read from the usual curves of KQ and KT v. J, as

illustrated in Figure 2, but extrapolated into the regime where thrust and torque are 

negative, as indicated in the same figure. By taking equation (6) in conjunction with 

the appropriate performance chart (viz., Figure 2) for a given propeller pattern, we can 

see that velocity of advance, VA, can be determined for any given combination of J

and KQ, assuming that we have constant shaft torque, Q. Now, by extrapolating the 

curve for KT into the negative zone also, one is able to obtain a value of KT, and 

consequently thrust, T, for those very combinations of J and KQ. In summary: the 

variables required to enable convenient generation of a curve of (negative) thrust v. 

velocity are present as the key dimensions of the screw together with the braking 

torque on the shaft; these are conveniently measurable in a practical sense. An 

important feature of this approach is that, if we are in possession of a relationship 

which accurately models KT and KQ vis-à-vis J, then we have no need to measure n in 

order to be able to predict drag. The item absent thus far in the study is a performance 

chart appropriate to the particular screw pattern of interest. 
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Wageningen B-Screw Series 

The well known series of open-water systematic tests of over 120 model screws 

conducted at the Netherlands Ship Model Basin produced a wealth of data aimed 

principally at applications in preliminary ship design studies. As well as covering a 

wide range of operating conditions, the tests encompassed the effects of blade 

number, pitch ratio, expanded area ratio, blade outline and blade thickness (van 

Lammeren et al, 1969). By multiple regression analysis, these data have been reduced 

to polynomials, and hence predictive performance curves can thus be predicted for a 

very broad range of permutations of screw configuration (Oosterveld & van 

Oossanen, 1975; van Manen & van Oossanen, 1988). In brief, the performance 

predictions can be condensed to:- 

KT  = f1 (J, P/D, AE/A0, Z, Re)

KQ  = f2 (J, P/D, AE/A0, Z, Re)

where: P is the propeller pitch; D is the diameter; AE is the expanded area, the 

developed area of the screw outside the hub;  A0  = D
2
/4 is the disc area, Z is the 

number of blades and Re is Reynolds number. 

Whilst the Wageningen work was directed towards large commercial and naval 

vessels, the models tested were, in the main, of D = 0.24 m and therefore similar in 

size to or, indeed, slightly smaller than, propellers fitted to most auxiliary yachts. (A 

significant observation, therefore, is that the Wageningen tests were conducted at 

Reynolds numbers of identical order of magnitude to those experienced by full-scale 

sailboat propellers, thus engendering some confidence that, in this respect at least, the 

B-Screw comparisons are appropriate.) The B-Screw Series studies include very 
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precise specifications for all of the propeller dimensions. However, the results have 

since been widely used to predict approximately the performance of propellers whose 

geometry may diverge somewhat from the specified standard (a practice described, 

for example, by Benini, 2003). One is therefore drawn to speculate, prima facie, that 

the extent to which the B-Screw Series results may be used to characterise yacht 

screws may be worthy of investigation.  Consequently, one of the objectives here was 

to assess whether the predicted forward performance curves for a sailboat screw could 

be adapted to provide us with a sufficiently accurate prediction of propeller drag. As 

the first step towards this, the predicted characteristics generated using B-Series 

polynomials were compared with some of the experimental data for forward 

performance of sailboat screws previously published by Lurie and Taylor. 

Method of Predicting Forward Performance Curves 

The coefficients and terms of the KT and KQ polynomials of the Wageningen B-Series 

(op cit) are presented in Tables 1 and 2, but re-organised for the present work into a 

form more convenient for programming. 

Thus, for any combination of P/D, AE/A0, and Z, it is a relatively straightforward 

matter to develop a computer program to predict the values of KT and KQ for the range 

of values of J in which we are interested, viz: 

KT = a + bJ + cJ2 + dJ3
   ……………. (9) 

and

KQ = e + fJ + gJ2 + hJ3  ………………(10) 

Comparison with Experiment – Forward Performance 
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The experimental work conducted by Lurie and Taylor (1995) in a variable pressure 

water tunnel at the Marine Hydrodynamics Laboratory of Massachusetts Institute of 

Technology, was aimed at comparing several practical aspects of full-scale sailboat 

propellers: forward performance; crash-back; and locked drag. Included in their 

published results are forward performance curves covering the wide range of 

propeller configurations found on sailboats: fixed, folding, feathering, two-bladed and 

three-bladed.  

None of the screws replicated the exact geometry of a standard Wageningen B-Series 

screw, but of interest here in the first instance is the extent to which we may be able to 

relate the available polynomials for KT and KQ to the actual measured performance of 

some typical fixed-blade yacht propellers. Thus, Figures 3a and 3b depict curves 

derived for the present study using the ‘Wageningen’ polynomials, employing the key 

geometric features (diameter, pitch, EAR) of two fixed-blade propellers tested in the 

MIT work. Alongside our predicted values, we have imposed curves of measured 

performance which we have computed using data extracted from the drag v. velocity 

results previously published (ibid.).

There is good agreement between predicted B-Screw characteristics and those derived 

from the available experimental data. Indeed, in Figure 3a the similarities between the 

two sets of data are remarkable. Both screws were produced by the same 

manufacturer, are very widely used, and were of patterns which, apart from the blade 

section details, part-airfoil and part-ogival, were qualitatively quite similar in 

geometry to their respective B-Screw equivalents. Sailboat fixed-blade propellers 

generally have similar blade cross-sections to the two cited (Gerr, 1989) and based on 
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this limited assessment, and with a little caution, one may adopt the predictions of B-

Screw characteristics to this extent. In the absence of further study, however, one 

should be guarded in using the B-Screw results for other types of blade whose 

geometries may nullify this approach; it should be noted that some types of sailboat 

propeller, notably all folding propellers, but others besides, have geometries which 

depart markedly from the B-Screw standard. 

Of particular interest in the present work is the observation that, especially in those 

areas in Figures 3a and 3b corresponding to minimum thrust (i.e., high values of J), 

the experimental curves of KT and KQ are predicted quite accurately by the respective 

polynomials. It appears, therefore, that the performance of fixed-blade sailboat screws 

of typical non-radical geometries might, indeed, be modelled, adequately, for forward 

propulsion and this provided justification for proceeding with the next stage of the 

investigation.

Experimental Evaluation of Drag as a Function of Torque (Brake) Loadings 

The information we wish to access is contained in the tail-end of the KT, KQ v. J

curves, as highlighted in Figure 2. The experimental work which was carried out to 

assess this relationship between braking torque and hydrodynamic drag was set up in 

such a way as to give a reasonable approximation of the conditions pertaining to a 

modern fin-keeled yacht. The short shaft on which the propeller was mounted was 

supported in roller bearings enclosed within a strut which was of similar dimensions 

to the ‘P-bracket’ which, on fin-keeled yachts, typically supports the end-bearing of 

the external propeller shaft immediately ahead of the propeller itself. The bearing 

housing was designed to contain a shaft-speed transducer also, together with an 
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adjustable friction brake on the shaft. Close to its mounting on the tow-tank carriage, 

the strut incorporated an electronic load-cell for drag measurement. A schematic of 

the layout is depicted in Figure 4. The test runs were conducted with the propeller 

trailing behind the support strut and bearing, and with the screw hub immersed to a 

depth of 1 metre. 

The tests were conducted in a 70 metre towing tank at the Marine Hydrodynamics 

Laboratory of the Universities of Glasgow and Strathclyde. This is 4.6 metres wide 

with a depth of 2.5 metres, and containing fresh water which was at a temperature of 

130 C during the present work. 

The propeller used in this section of work (propeller ‘A’ in Figure 5) was of a simple 

general purpose pattern commonly found on yachts, with blade shape of round so-

called ‘turbine’ pattern, no skew and 6 degrees of rake. The pitch and diameter were 

0.152 m and 0.305 m respectively (6 inches and 12 inches). The expanded area ratio, 

AE/A0, (also EAR) was 54 % and the hub area, at 18 % of the total disc area, was 

slightly less than the B-Series norm of 20 %; the chord length, C0.75, at 0.75 of radius, 

R, from the hub centre, was 0.11 m. In keeping with modern practice in small-craft 

screw design (Gerr, 1989) the blades were of combined airfoil/ogival geometry, 

having airfoil section worked in from the roots to 0.7R and ogival over the remainder 

(i.e., flat on the thrust face, rounded on the suction surface); in this respect in 

particular, there is some departure from the B-Series geometry. The screw was 

manufactured in manganese bronze.  
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Tests were conducted over a range of braking torque settings from the minimum 

setting of the rig, 0.21 Nm, up to fully locked. (It is worth noting here that Warren 

(1972) estimated that the practical range of frictional torque for vessels of the size 

outlined above was about 0.8 Nm to 3 Nm; to some extent, this can be confirmed by a 

survey undertaken by the authors, but with the lower end of the range being extended 

to about 0.2 Nm).   Carriage speeds between 0.52 m/s and 3.09 m/s (1 to 6 knots) 

were used and the resultant propeller shaft speeds, n, observed during the programme 

were within the range 2 to 15 revolutions per second (120 to 900 rpm), depending, of 

course, upon the velocity, VA, and magnitude of the preset braking torque, Q.

Reynolds Number Effects 

The coefficients in Tables 1 and 2 are for a Reynolds number of 2 x 106. The 

Reynolds numbers in the present work, Re0.75, may be evaluated for the chord length 

at 0.75R, the conditions at which point have been shown to be representative of the 

whole blade (Oosterveld & van Oossanen, 1975). Re0.75 is obtained from:- 

22
75.0

75.0

)75.0(
Re

nDVC A    ………………. (11) 

where  is the kinematic viscosity, 1.21x10-6 m2/s for the present work. Using this 

approach, a representative range of values for Re0.75  for the operating conditions of 

the tests performed in the Glasgow and Strathclyde tank was found to be 

approximately  5 x 105  to 9 x 105. In a manner similar to that employed in the main 

portion of their work, Oosterveld and van Oossanen applied multiple regression 

analysis to a relatively limited number of screw tests to obtain polynomials aimed at 

enabling corrections to be made to predicted KT and KQ values for conditions of Re0.75
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between 2 x 106 and 108, covering the range which was of practical interest to them, 

namely the conditions experienced in large commercial and naval vessels. Thus: 

 KT = f3 (J, P/D, AE/A0, Z, (log Re0.75 – 0.301)) 

 KQ = f4 (J, P/D, AE/A0, Z, (log Re0.75 – 0.301)) 

In the work presented here, the largest correction would be associated with the lowest 

value of Reynolds number encountered which was Re = 5 x 105.  The influence of this 

was calculated by extrapolation of the Wageningen corrections and was found to be 

insignificant for the present purpose; for example,   KT = 0.3% of the 

uncompensated value of KT, whilst  KQ was predicted to be not more than 4% of the 

unadjusted KQ.

Discussion of Results: Freewheeling Screw 

The basic results of the freewheeling towing tests are illustrated in Figure 6. Sets of 

data for three different shaft frictional torque settings are presented. The chart depicts 

the drag data obtained experimentally for the locked shaft condition also, and for 

comparison, the corresponding curve predicted using equation (1) and CD = 1.2 is 

included. At the other end of the spectrum, for the hypothetical freewheeling 

condition with zero braking torque, the curve of predicted drag for CD = 0.3 (Larsson 

& Eliasson, 1994) is shown also. 

Recalling that one of our aims was to evaluate the possible use of the Wageningen B-

Screw results to model freewheeling drag characteristics, polynomials were generated 

to predict KT and KQ for the screw being tested, viz.: 

32 07085.01904.02517.01900.0 JJJKT  ……………. (12) 

32 005945.001291.001777.001684.0 JJJKQ  ………. (13) 



Acc
ep

te
d m

an
usc

rip
t 

16

The forward performance curves are depicted in Figure 7a along with their 

extrapolations into the zone of negative thrust and negative torque. The section of 

interest to us is shown magnified in Figure 7b. Also in this figure are the 

corresponding data points obtained from the towing tank results. The predicted curves 

in this area are essentially collinear and therefore least-squares regression lines have 

been fitted through the experimental data for KT and KQ.

The experimentally derived linear fits of KT and KQ were used to reconstruct curves of 

drag v. velocity and these are presented alongside the experimental data points in 

Figure 6. It is not surprising that there is good correspondence, the divergence 

between the reconstructed data and curves through the experimental resistance data 

being not more than 2% of the drag force.  

Figure 8 contains the curves of drag v. velocity developed from the coefficients 

generated by our experimental drag trials, together with those predicted for the 

equivalent B-Screw. Here the agreement is less good, the differences in drag force 

being up to 13% for the highest level of shaft torque, and as much as 20% for the 

lowest torque setting; the proportional difference was generally much less at the lower 

end of the velocity range. Nevertheless, these data predict drag forces which are in all 

cases some 100% to 200% greater than those given by the simple approach described 

by Larsson and Eliasson.  

INVESTIGATION - LOCKED SHAFT CONDITION 

Experimental Evaluation of Drag Characteristics 
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For yachts under sail, this is the setup most frequently used. Leaving aside the 

mistaken belief possessed by many yachtsmen that this is the preferred (low drag) 

configuration, most manufacturers of small marine gearboxes specify that, when their 

products are fitted in sailing boats, the transmission should be locked by engaging 

ahead or astern gear when the engine is not in use and the vessel is making way. The 

reasons for this are generally concerned with durability and wear; for example, some 

gearbox designs receive adequate lubrication of internal bearings only when the 

engine is operating.  

Tests were conducted using the towing tank and the same experimental arrangements 

as described for the freewheeling tests detailed above. In addition to the propeller 

used in the freewheeling tests, two other screws of common patterns were assessed; 

all three are illustrated in Figure 5 and their dimensions are detailed in Table 3.  

The drag force and velocity data are presented in Figure 9a; these are net of the drag 

due to the test rig. The figure also incorporates results published by Lurie and Taylor 

(1995) for three further geometries of fixed-blade propellers and one folding 

propeller. It can be seen that, despite the differing experimental arrangements 

employed, namely a towing tank in our case and a water tunnel in the previous work, 

the results for the fixed-blade screws are of a broadly similar pattern.  

We have gone on to reduce the data for all of the propellers to give, in Figure 9b, CD

values over the speed range of interest. The measured drag forces, along with 

projected frontal areas, AP, were reduced to values of Cd for each screw thus: 
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25.0 AP

D
VA

T
C ……………………….. (12) 

Where, from Gerr (1989), a good approximation of AP is given by: 

2

625.01.00125.1
D

P

D

P
AA EP  ………..  (13) 

Finally, in order to emphasise the distinct contrast in drag obtained where a folding 

propeller is in use, we have added results which Lurie and Taylor obtained for a two-

blade folding propeller of a pattern which is in widespread use.  (Note that the Cd

values we have given for the folding propeller are not properly the hydrodynamic 

measure of drag coefficient in that it is the projected frontal area, AP, of the deployed 

blades, not that of the folded geometry, which is used as the denominator, whilst the 

drag forces were those obtained with the folded arrangement; rather we have followed 

the style of Larsson and Eliasson (1994) who use this as a shorthand method of 

making practical comparison between configurations. Of course, in the folded 

configuration, a major element of the drag is due to the bluff body effect of the 

propeller hub; one should note, therefore, that a change in unfolded blade area would 

not necessarily be accompanied by a proportional change in hub area, the hub size 

being determined by other practical requirements such as shaft diameter and torque 

loadings.)

Discussion of Results: Locked Shaft 

The CD data for the locked propellers show a surprisingly wide variation in trends for 

the different patterns of screw.  For example, at a velocity of advance of 3.09 m/s (6 

knots), CD = 0.98 ± 0.18, the distribution of CD values for the six screws is spread 

almost uniformly across that range, with no clustering around a mean. The overall 
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average for all the data points is 1.08 and is therefore slightly lower than the figure of 

CD = 1.20 proposed by Larsson and Eliasson. The previously published data for the 

folding propeller also demonstrate a slightly different average “apparent” coefficient 

of drag (i.e., the drag being for the folded condition, see above) from that suggested, 

in this case, being higher, at CD = 0.09 rather than 0.06. The experimentally derived 

characteristics of the folding propeller have been included in Table 4 for comparison 

with some other configurations, both locked and freewheeling. 

CASE STUDY 

In order to demonstrate the significance of these results in the context of the overall 

resistance of a sailing boat hull, for convenience we may draw on a simple but very 

approximate relationship between specific resistance of a hull, R/ , where is the 

displacement of the vessel, and the speed-to-length ratio, LV / ,  where L is the 

waterline length. The relationship has been presented graphically for a range of 

displacement to length ratios (DLR) by Marchaj (2000). Two cases were considered 

for our purpose: a moderate displacement boat of DLR = 200, typifying a modern 

cruiser racer; and a heavy displacement yacht with DLR = 400, an example of which 

would be a heavily built ocean-going cruiser. Estimates of the ratio of propeller drag 

to hull drag at V = 3.63 m/s (about 90% of hull speed for the given LWL) are given in 

Table 4 for each case. For the purposes of the comparison, we have assumed an 

identical propeller installation in both cases and whilst this is not entirely improbable, 

it would be unlikely to provide the optimal setup for mechanical propulsion of the 

heavy boat, the small propeller lacking somewhat in blade area. (It must also be 

emphasised the evaluations of hull resistance are for illustrative comparisons only and 

are not intended to be regarded as rigorous assessments of any case in particular.)  As 
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can be seen in the table, for the heavier boat, the additional drag due to both the 

locked propeller (3.4 %) and in the freewheeling arrangement (1.7 %) is relatively 

insignificant compared to the respective penalties (14.8% and 7.3%) imparted by the 

trailing screw in the example of the moderate displacement yacht. Were the heavy 

boat to be fitted with a larger, perhaps more suitable, screw, then its drag penalty too 

would, of course, be more harmfully affected. It is worth observing that, in a sailing 

boat, the driving force is almost directly proportional to the amount of sail area, and 

therefore the consequence is that those predicted percentages of parasitic drag due to 

the screw consume the entire driving force produced by an identical proportion of the 

vessel’s sail area.   

CONCLUDING REMARKS 

The parasitic drag imposed on sailing yachts by a range of propeller setups has been 

investigated. New data generated in towing tank tests has been incorporated with 

previous independently published findings in order to assess a range of typical two- 

and three-bladed sailboat propeller configurations in the locked shaft condition. 

Further experiments were conducted on one of the three-bladed propellers in the 

freewheeling condition with a range of different frictional torque settings applied to 

the shaft.

Part of the investigation was directed towards establishing whether the polynomials 

associated with the Wageningen B-Screw Series could be used to predict the 

freewheeling performance of sailboat propellers of conventional geometry. This 

appears to be justifiable to a degree of accuracy which would in most respects be 

adequate for boat design and screw selection, provided that the blade section is of the 
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common mixed ogival/airfoil pattern, even where the geometry of interest does not 

mirror precisely the detailed Wageningen standard.   

For the freewheeling condition, with a fixed magnitude of braking torque on the shaft, 

B-Screw polynomials produced significantly better agreement with results of towing-

tank experiments than did a previously published approach. The correlation between 

the polynomial results and experiment was best for the higher torque settings tested; 

in the worst instance, differences of up to 20% between predicted and experimental 

drag forces were observed for low torque / high boatspeed conditions.  

Aside from B-Screw considerations, it was demonstrated for the three-blade screw 

tested in freewheeling conditions that KT and KQ resistance curves, which were 

generated purely from experimental data, could be used to predict propeller drag 

forces with considerable accuracy over the full range of operating conditions.  

For the locked shaft condition, a series of new data were generated in towing tank 

trials and incorporated with other published results of similar work. Six propellers 

were represented in all, with Expanded Area Ratios from 0.30 to 0.54. The overall 

average drag coefficient calculated over the entire speed range up to 4.1 m/s was, at 

CD =1.1 only marginally less than the single value, CD =1.2,  which had been 

proposed in earlier work. However, a consistent trend showing the CD  to be 

significantly dependent on velocity was apparent, and this was especially so at the 

lower end of the speed range; one may speculate that this may be due to a laminar-

turbulent transition (the Reynolds numbers obtained point us towards this) but such a 

conclusion cannot be supported without further investigation.   
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This speed-related trend was observed for all six screws tested but, in addition, there 

were significant differences between the CD values obtained for each of the propellers 

at each point in the speed range. One might infer from these observations, taken 

collectively, that to consider a locked propeller to be a bluff body normal to the flow 

may be an over-simplification. Nevertheless, where a simplistic prediction of locked-

shaft drag is required, an average CD  value of 1.1 could be used but with a caveat 

that, at the upper and lower ends of the speed range tested, CD  values diverging by as 

much as 30% from this have been observed, depending on the particular propeller 

geometry being considered. 

The experimental results confirm that a locked propeller produces greater drag than 

does a freewheeling screw (up to 100% more drag was observed, this being at higher 

speeds). Furthermore, for the freewheeling case, the magnitude of the hydrodynamic 

resistance is significantly affected by the amount of frictional torque on the shaft, low 

torque being accompanied by low drag. 

Finally, a simple model of sailboat hull resistance has been used to illustrate the likely 

scale of the drag penalty due to various arrangements of trailing propeller. This shows 

that, especially for the case of craft having moderate or low displacement-to-length 

ratios combined with powerful mechanical installations, the impact on sailing 

performance of a trailing propeller is very significant indeed. By combining the 

present findings with other more detailed techniques which exist for modelling hull 

drag, the influence of propeller drag on sailing performance should be substantially 

predictable.  
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FIGURES & CAPTIONS 

FIGURE 1 A variety of propulsion configurations commonly found on sailing 

boats. Clockwise from top left: fixed three-blade in aperture behind 

long-keel; fixed three-blade on exposed shaft well behind fin-keel; 

feathering three-blade on shaft, fin keel; folding two-blade, deployed; 

folding two-blade, folded; folding three-blade, folded, on sail-drive 

strut behind high aspect-ratio keel. 

FIGURE 2 Schematic depiction of propeller performance curves. 

FIGURE 3a Comparison of B-Screw predicted performance curves, for 3-blade 

screw, with water tunnel results of Lurie and Taylor (1995) for Screw 

‘D’. Key dimensions are given in Table 3.  

FIGURE 3b Comparison of B-Screw predicted performance curves, for 2-blade 

screw, with water tunnel results of Lurie and Taylor (1995) for Screw 

‘E’. Key dimensions are given in Table 3. 

FIGURE 4 Schematic of strut for towing tank tests. 

FIGURE 5 Propellers tested in towing tank. Key dimensions are given in Table 3.

FIGURE 6 Freewheeling shaft: results of trials at various shaft torque settings for 

Screw ‘A’. Data points and error bars are given for the towing tank 

experiments on this screw. The curves derived here from K v J charts 

were generated using the KT and KQ curves which had been produced 

using the towing tank data for the same propeller.  

FIGURE 7a Freewheeling shaft: predicted and experimental performance chart for 

Screw ‘A’. 
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TABLE 1 

Ct,u,v t u v
   

0.008804960 0 0 0

0.166351000 1 0 0

0.158114000 2 0 0

0.415437000 2 1 0

0.014404300 0 0 1

0.014348100 1 0 1

-0.012589400 0 1 1

-0.133698000 3 0 0

0.006384070 6 0 0

-0.050721400 0 2 0

-0.008417280 3 0 1

-0.031779100 3 1 1

-0.004107980 2 2 1

-0.000606848 0 0 2

0.000690904 0 1 2

0.004217490 3 1 2

-0.001465640 3 2 2

    

    

-0.204554000 0 0 0

-0.481497000 1 1 0

0.060682600 1 0 1

0.010968900 0 1 1

0.010465000 6 2 0

0.016842400 3 0 1

0.018604000 0 2 1

-0.004981900 0 0 2

-0.001636520 2 0 2

-0.000328787 6 0 2

    

    

-0.147581000 0 1 0

-0.053005400 0 0 1

-0.001327180 6 0 0

0.085455900 0 2 0

-0.006482720 6 2 0

0.002598300 0 0 2

0.000116502 6 0 2

    

    

0.168496000 0 1 0

-0.050447500 0 2 0

-0.001022960 3 0 1

-0.000560528 0 0 2

0.000056523 6 1 2

32 dJcJbJaKT

vu
E

t

vut

vut ZAADPCa )/()/( 0

,,

,,

vu
E

t

vut

vut ZAADPCb )/()/( 0

,,

,,

vu
E

t

vut

vut ZAADPCc )/()/( 0

,,

,,

vu
E

t

vut

vut ZAADPCd )/()/( 0

,,

,,



Acc
ep

te
d m

an
usc

rip
t 

TABLE 2 

Ct,u,v t u v

0.003793690 0 0 0

0.003447780 2 0 0

-0.040881100 1 1 0

0.188561000 2 1 0

0.005136960 1 0 1

-0.026940300 2 1 1

0.016188600 3 1 0

0.015896000 0 2 0

-0.050278200 1 2 0

-0.039772200 3 2 0

-0.003500240 6 2 0

-0.000313912 6 0 1

-0.001421210 6 1 1

0.012680300 2 2 1

0.003342680 6 2 1

0.001553340 2 1 2

0.000302683 6 1 2

-0.000184300 0 2 2

-0.000425399 3 2 2

-0.000465900 6 2 2

    

    

-0.032241000 1 0 0

-0.108009000 1 1 0

-0.003708710 0 0 1

0.020944900 1 0 1

0.004383880 1 1 1

0.003180860 3 1 0

0.047172900 0 2 0

-0.003836370 0 2 1

-0.001834910 1 0 2

0.000269551 0 1 2

0.000055419 6 2 2

    

    

0.008865230 0 0 0

-0.088538100 1 1 0

0.004743190 1 0 1

-0.007234080 0 1 1

0.041712200 2 2 0

-0.003182780 3 2 1

0.000832650 0 1 2

    

    

0.055808200 0 1 0

0.019628300 0 2 0

-0.030055000 1 2 0

-0.010685400 0 0 1

0.001109030 3 0 1

0.003598500 0 1 1

0.000112451 2 0 2

-0.000029723 6 0 2

0.000086924 3 2 2
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Figure 1 
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Figure 2 
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Figure 3a 
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Figure 3b 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7a
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Figure 7b 
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Figure 8 
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Figure 9a 
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Figure 9b 


